Telegram Group & Telegram Channel
به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.tg-me.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff



tg-me.com/nlp_stuff/361
Create:
Last Update:

به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.tg-me.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/361

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

NLP stuff from it


Telegram NLP stuff
FROM USA